NEML2 1.4.0
Loading...
Searching...
No Matches
KocksMeckingYieldStress.cxx
1// Copyright 2023, UChicago Argonne, LLC
2// All Rights Reserved
3// Software Name: NEML2 -- the New Engineering material Model Library, version 2
4// By: Argonne National Laboratory
5// OPEN SOURCE LICENSE (MIT)
6//
7// Permission is hereby granted, free of charge, to any person obtaining a copy
8// of this software and associated documentation files (the "Software"), to deal
9// in the Software without restriction, including without limitation the rights
10// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11// copies of the Software, and to permit persons to whom the Software is
12// furnished to do so, subject to the following conditions:
13//
14// The above copyright notice and this permission notice shall be included in
15// all copies or substantial portions of the Software.
16//
17// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23// THE SOFTWARE.
24
25#include "neml2/models/solid_mechanics/KocksMeckingYieldStress.h"
26
27namespace neml2
28{
29register_NEML2_object(KocksMeckingYieldStress);
30
33{
35
36 options.doc() = "The yield stress given by the Kocks-Mecking model. \\f$ \\sigma_y = \\exp{C} "
37 "\\mu \\f$ with \\f$ \\mu \\f$ the shear modulus and \\f$ C \\f$ the horizontal "
38 "intercept from the Kocks-Mecking diagram.";
39
40 options.set<CrossRef<Scalar>>("C");
41 options.set("C").doc() = "The Kocks-Mecking horizontal intercept";
42 options.set<CrossRef<Scalar>>("shear_modulus");
43 options.set("shear_modulus").doc() = "The shear modulus";
44
45 return options;
46}
47
49 : NonlinearParameter<Scalar>(options),
50 _C(declare_parameter<Scalar>("C", "C")),
51 _mu(declare_parameter<Scalar>("shear_modulus", "shear_modulus"))
52{
53}
54
55void
57{
58 if (out)
59 _p = _mu * math::exp(_C);
60
61 if (dout_din)
62 {
63 if (const auto mu = nl_param("shear_modulus"))
64 _p.d(*mu) = math::exp(_C);
65
66 if (const auto C = nl_param("C"))
67 _p.d(*C) = _mu * math::exp(_C);
68 }
69
70 if (d2out_din2)
71 {
72 if (const auto C = nl_param("C"))
73 {
74 _p.d(*C, *C) = _mu * math::exp(_C);
75 if (const auto mu = nl_param("shear_modulus"))
76 _p.d(*C, *mu) = math::exp(_C);
77 }
78 }
79}
80} // namespace neml2
The wrapper (decorator) for cross-referencing unresolved values at parse time.
Definition CrossRef.h:52
A scalar-valued parameter defined by (mu0 - D/(exp(T0/T)-1)) * exp(_C)
Definition KocksMeckingYieldStress.h:35
const Scalar & _C
The Kocks-Mecking intercept value.
Definition KocksMeckingYieldStress.h:45
KocksMeckingYieldStress(const OptionSet &options)
Definition KocksMeckingYieldStress.cxx:48
const Scalar & _mu
The shear modulus.
Definition KocksMeckingYieldStress.h:48
static OptionSet expected_options()
Definition KocksMeckingYieldStress.cxx:32
void set_value(bool out, bool dout_din, bool d2out_din2) override
The map between input -> output, and optionally its derivatives.
Definition KocksMeckingYieldStress.cxx:56
const torch::TensorOptions & options() const
This model's tensor options.
Definition Model.h:116
The base class for nonlinear parameters.
Definition NonlinearParameter.h:51
Variable< Scalar > & _p
The nonlinear parameter.
Definition NonlinearParameter.h:62
static OptionSet expected_options()
Definition NonlinearParameter.cxx:31
A custom map-like data structure. The keys are strings, and the values can be nonhomogeneously typed.
Definition OptionSet.h:59
const VariableBase * nl_param(const std::string &) const
Query the existence of a nonlinear parameter.
Definition ParameterStore.cxx:56
The (logical) scalar.
Definition Scalar.h:38
Derivative d(const VariableBase &x)
Create a wrapper representing the derivative dy/dx.
Definition Variable.cxx:102
Derived exp(const Derived &a)
Definition BatchTensorBase.h:448
Definition CrossRef.cxx:32