NEML2 1.4.0
Loading...
Searching...
No Matches
Model Class Referenceabstract

The base class for all constitutive models. More...

Detailed Description

The base class for all constitutive models.

A model maps some input to output. The forward operator (and its derivative) is defined in the method set_value. All concrete models must provide the implementation of the forward operator by overriding the set_value method.

#include <Model.h>

Inheritance diagram for Model:

Public Types

enum  Stage { SOLVING , UPDATING }
 

Public Member Functions

 Model (const OptionSet &options)
 Construct a new Model object.
 
virtual std::vector< Diagnosispreflight () const
 Check for common problems.
 
virtual bool is_nonlinear_system () const
 Whether this model defines one or more nonlinear equations to be solved.
 
virtual void reinit (TorchShapeRef batch_shape, int deriv_order=0, const torch::Device &device=torch::kCPU, const torch::Dtype &dtype=NEML2_DTYPE)
 Allocate storage and setup views for all the variables of this model and recursively all of the sub-models.
 
virtual void reinit (const BatchTensor &tensor, int deriv_order)
 Allocate storage and setup views for all the variables of this model and recursively all of the sub-models. See the other overload for detailed description.
 
bool requires_grad () const
 Whether derivative has been requested for this model.
 
bool requires_2nd_grad () const
 Whether 2nd derivative has been requested for this model.
 
TorchSize batch_dim () const
 This model's batch dim.
 
TorchShapeRef batch_sizes () const
 This model's batch shape.
 
const torch::TensorOptions & options () const
 This model's tensor options.
 
const std::vector< Model * > & registered_models () const
 The models that may be used during the evaluation of this model.
 
Modelregistered_model (const std::string &name) const
 Get a registered model by its name.
 
virtual const std::set< VariableNameconsumed_items () const override
 The variables that this model depends on.
 
virtual const std::set< VariableNameprovided_items () const override
 The variables that this model defines as part of its output.
 
virtual void check_AD_limitation () const
 
void input_requires_grad_ (bool req=true)
 Set requires_grad for the input variables.
 
bool using_AD_1st_derivative () const
 Whether this model is using AD to get 1st derivatives.
 
bool using_AD_2nd_derivative () const
 Whether this model is using AD to get 2nd derivatives.
 
void use_AD_derivatives (bool first=true, bool second=true)
 Tell this model to use AD to get derivatives.
 
virtual void set_input (const LabeledVector &in)
 Set in to be the input of this model.
 
virtual LabeledVector get_output ()
 
virtual LabeledMatrix get_doutput_dinput ()
 
virtual LabeledTensor3D get_d2output_dinput2 ()
 
virtual LabeledVector value (const LabeledVector &in)
 Convenient shortcut to construct and return the model value.
 
virtual std::tuple< LabeledVector, LabeledMatrixvalue_and_dvalue (const LabeledVector &in)
 Convenient shortcut to construct and return the model value and its derivative.
 
virtual std::tuple< LabeledVector, LabeledMatrix, LabeledTensor3Dvalue_and_dvalue_and_d2value (const LabeledVector &in)
 Convenient shortcut to construct and return the model's value, first and second derivative.
 
virtual void value ()
 
virtual void value_and_dvalue ()
 
virtual void value_and_dvalue_and_d2value ()
 
- Public Member Functions inherited from Data
 Data (const OptionSet &options)
 Construct a new Data object.
 
const std::vector< Data * > & registered_data () const
 All the registered data objects.
 
- Public Member Functions inherited from NEML2Object
 NEML2Object (const OptionSet &options)
 Construct a new NEML2Object object.
 
virtual ~NEML2Object ()=default
 
const OptionSetinput_options () const
 
const std::string & name () const
 A readonly reference to the object's name.
 
const std::string & type () const
 A readonly reference to the object's type.
 
const std::string & path () const
 A readonly reference to the object's path.
 
const std::string & doc () const
 A readonly reference to the object's docstring.
 
template<typename T = NEML2Object>
const T * host () const
 Get a readonly pointer to the host.
 
template<typename T = NEML2Object>
T * host ()
 Get a writable pointer to the host.
 
- Public Member Functions inherited from BufferStore
 BufferStore (const OptionSet &options, NEML2Object *object)
 
const Storage< std::string, TensorValueBase > & named_buffers () const
 
Storage< std::string, TensorValueBase > & named_buffers ()
 
template<typename T , typename = typename std::enable_if_t<std::is_base_of_v<BatchTensorBase<T>, T>>>
T & get_buffer (const std::string &name)
 }@
 
- Public Member Functions inherited from ParameterStore
 ParameterStore (const OptionSet &options, NEML2Object *object)
 
const Storage< std::string, TensorValueBase > & named_parameters () const
 
Storage< std::string, TensorValueBase > & named_parameters ()
 
template<typename T , typename = typename std::enable_if_t<std::is_base_of_v<BatchTensorBase<T>, T>>>
T & get_parameter (const std::string &name)
 }@
 
bool has_nl_param () const
 Whether this parameter store has any nonlinear parameter.
 
const std::map< std::string, const VariableBase * > & nl_params () const
 Get all nonlinear parameters.
 
const VariableBasenl_param (const std::string &) const
 Query the existence of a nonlinear parameter.
 
- Public Member Functions inherited from VariableStore
 VariableStore (const OptionSet &options, NEML2Object *object)
 
LabeledAxisdeclare_axis (const std::string &name)
 
virtual void setup_layout ()
 Setup the layouts of all the registered axes.
 
VariableBaseinput_view (const VariableName &)
 Get the view of an input variable.
 
VariableBaseoutput_view (const VariableName &)
 Get the view of an output variable.
 
template<typename T = BatchTensor>
Variable< T > & get_input_variable (const VariableName &name)
 
template<typename T = BatchTensor>
const Variable< T > & get_input_variable (const VariableName &name) const
 
template<typename T = BatchTensor>
const Variable< T > & get_output_variable (const VariableName &name)
 
template<typename T = BatchTensor>
const Variable< T > & get_output_variable (const VariableName &name) const
 
LabeledAxisinput_axis ()
 
const LabeledAxisinput_axis () const
 
LabeledAxisoutput_axis ()
 
const LabeledAxisoutput_axis () const
 
Storage< VariableName, VariableBase > & input_views ()
 
const Storage< VariableName, VariableBase > & input_views () const
 
Storage< VariableName, VariableBase > & output_views ()
 
const Storage< VariableName, VariableBase > & output_views () const
 
LabeledVectorinput_storage ()
 
const LabeledVectorinput_storage () const
 
LabeledVectoroutput_storage ()
 
const LabeledVectoroutput_storage () const
 
LabeledMatrixderivative_storage ()
 
const LabeledMatrixderivative_storage () const
 
LabeledTensor3Dsecond_derivative_storage ()
 
const LabeledTensor3Dsecond_derivative_storage () const
 
- Public Member Functions inherited from NonlinearSystem
 NonlinearSystem (const OptionSet &options)
 
virtual void init_scaling (const bool verbose=false)
 Compute algebraic Jacobian-based automatic scaling following https://cs.stanford.edu/people/paulliu/files/cs517-project.pdf.
 
BatchTensor scale_residual (const BatchTensor &r) const
 Apply scaling to the residual.
 
BatchTensor scale_Jacobian (const BatchTensor &J) const
 Apply scaling to the Jacobian.
 
BatchTensor scale_direction (const BatchTensor &p) const
 Remove scaling from the search direction, i.e. \( J^{-1} r \).
 
virtual BatchTensor solution () const
 Get the solution vector.
 
BatchTensor residual (const BatchTensor &x)
 Convenient shortcut to set the current solution, assemble and return the system residual.
 
void residual ()
 Convenient shortcut to assemble and return the system residual.
 
BatchTensor Jacobian (const BatchTensor &x)
 Convenient shortcut to set the current solution, assemble and return the system Jacobian.
 
void Jacobian ()
 Convenient shortcut to assemble and return the system Jacobian.
 
std::tuple< BatchTensor, BatchTensorresidual_and_Jacobian (const BatchTensor &x)
 Convenient shortcut to set the current solution, assemble and return the system residual and Jacobian.
 
void residual_and_Jacobian ()
 Convenient shortcut to assemble and return the system residual and Jacobian.
 
const BatchTensorresidual_view () const
 
const BatchTensorJacobian_view () const
 
BatchTensor residual_norm () const
 The residual norm.
 

Static Public Member Functions

static OptionSet expected_options ()
 
- Static Public Member Functions inherited from Data
static OptionSet expected_options ()
 
- Static Public Member Functions inherited from NEML2Object
static OptionSet expected_options ()
 
- Static Public Member Functions inherited from NonlinearSystem
static OptionSet expected_options ()
 
static void disable_automatic_scaling (OptionSet &options)
 
static void enable_automatic_scaling (OptionSet &options)
 

Static Public Attributes

static enum neml2::Model::Stage stage = UPDATING
 

Protected Member Functions

virtual void setup () override
 Setup this model.
 
virtual void allocate_variables (int deriv_order, bool options_changed)
 Call VariableStore::allocate_variables recursively on all submodels.
 
virtual void setup_input_views () override
 Call VariableStore::setup_input_views recursively on all submodels.
 
virtual void setup_submodel_input_views ()
 
virtual void setup_output_views () override
 Call VariableStore::setup_output_views recursively on all submodels.
 
virtual void setup_submodel_output_views ()
 
virtual void reinit_input_views () override
 Call VariableStore::reinit_input_views recursively on all submodels.
 
virtual void reinit_output_views (bool out, bool dout_din=true, bool d2out_din2=true) override
 Call VariableStore::reinit_output_views recursively on all submodels.
 
virtual void detach_and_zero (bool out, bool dout_din=true, bool d2out_din2=true) override
 Call VariableStore::detach_and_zero recursively on all submodels.
 
virtual void set_solution (const BatchTensor &x) override
 Set x as the current solution of the nonlinear system.
 
virtual void set_value (bool out, bool dout_din, bool d2out_din2)=0
 The map between input -> output, and optionally its derivatives.
 
virtual void cache (TorchShapeRef batch_shape) override
 Cache the variable's batch shape.
 
virtual void cache (const torch::TensorOptions &options)
 Cache tensor options.
 
template<typename T , typename = typename std::enable_if_t<std::is_base_of_v<Model, T>>>
T & register_model (const std::string &name, int extra_deriv_order=0, bool nonlinear=false, bool merge_input=true)
 Register a model that the current model may use during its evaluation.
 
virtual void assemble (bool residual, bool Jacobian) override
 Compute the residual and Jacobian.
 
virtual void allocate_variables (TorchShapeRef batch_shape, const torch::TensorOptions &options, bool in, bool out, bool dout_din, bool d2out_din2)
 Allocate variable storages given the batch shape and tensor options.
 
virtual void cache (TorchShapeRef batch_shape)
 Cache the variable's batch shape.
 
- Protected Member Functions inherited from Data
template<typename T , typename = typename std::enable_if_t<std::is_base_of_v<Data, T>>>
T & register_data (const std::string &name)
 
- Protected Member Functions inherited from BufferStore
virtual void send_buffers_to (const torch::TensorOptions &options)
 Send all buffers to options.
 
template<typename T , typename = typename std::enable_if_t<std::is_base_of_v<BatchTensorBase<T>, T>>>
const T & declare_buffer (const std::string &name, const T &rawval)
 Declare a buffer.
 
template<typename T , typename = typename std::enable_if_t<std::is_base_of_v<BatchTensorBase<T>, T>>>
const T & declare_buffer (const std::string &name, const std::string &input_option_name)
 Declare a buffer.
 
- Protected Member Functions inherited from ParameterStore
virtual void send_parameters_to (const torch::TensorOptions &options)
 Send parameters to options.
 
template<typename T , typename = typename std::enable_if_t<std::is_base_of_v<BatchTensorBase<T>, T>>>
const T & declare_parameter (const std::string &name, const T &rawval)
 Declare a parameter.
 
template<typename T , typename = typename std::enable_if_t<std::is_base_of_v<BatchTensorBase<T>, T>>>
const T & declare_parameter (const std::string &name, const std::string &input_option_name)
 Declare a parameter.
 
- Protected Member Functions inherited from VariableStore
template<typename T , typename... S>
const Variable< T > & declare_input_variable (S &&... name)
 Declare an input variable.
 
template<typename... S>
const Variable< BatchTensor > & declare_input_variable (TorchSize sz, S &&... name)
 Declare an input variable (with unknown base shape at compile time)
 
template<typename T , typename... S>
const Variable< BatchTensor > & declare_input_variable_list (TorchSize list_size, S &&... name)
 Declare an input variable that is a list of tensors of fixed size.
 
template<typename T , typename... S>
Variable< T > & declare_output_variable (S &&... name)
 Declare an output variable.
 
template<typename... S>
Variable< BatchTensor > & declare_output_variable (TorchSize sz, S &&... name)
 Declare an input variable (with unknown base shape at compile time)
 
template<typename T , typename... S>
Variable< BatchTensor > & declare_output_variable_list (TorchSize list_size, S &&... name)
 Declare an output variable that is a list of tensors of fixed size.
 
template<typename T >
VariableName declare_variable (LabeledAxis &axis, const VariableName &var) const
 Declare an item recursively on an axis.
 
VariableName declare_variable (LabeledAxis &axis, const VariableName &var, TorchSize sz) const
 Declare an item (with known storage size) recursively on an axis.
 
VariableName declare_subaxis (LabeledAxis &axis, const VariableName &subaxis) const
 Declare a subaxis recursively on an axis.
 

Protected Attributes

std::vector< Model * > _registered_models
 Models this model may use during its evaluation.
 
bool _AD_1st_deriv
 Whether to use AD to compute 1st derivatives.
 
bool _AD_2nd_deriv
 Whether to use AD to compute 2nd derivatives.
 
- Protected Attributes inherited from Data
std::vector< Data * > _registered_data
 Registered Data objects.
 
- Protected Attributes inherited from NonlinearSystem
TorchSize _ndof
 Number of degrees of freedom.
 
BatchTensor _solution
 View for the solution of this nonlinear system.
 
BatchTensor _residual
 View for the residual of this nonlinear system.
 
BatchTensor _Jacobian
 View for the Jacobian of this nonlinear system.
 
BatchTensor _scaled_residual
 
BatchTensor _scaled_Jacobian
 
const bool _autoscale
 If true, do automatic scaling.
 
const Real _autoscale_tol
 Tolerance for convergence check of the iterative automatic scaling algorithm.
 
const unsigned int _autoscale_miter
 Maximum number of iterations allowed for the iterative automatic scaling algorithm.
 
bool _scaling_matrices_initialized
 Flag to indicate whether scaling matrices have been computed.
 
BatchTensor _row_scaling
 Row scaling "matrix" – since it's a batched diagonal matrix, we are only storing its diagonals.
 
BatchTensor _col_scaling
 Column scaling "matrix" – since it's a batched diagonal matrix, we are only storing its diagonals.
 

Friends

class ParameterStore
 Declaration of nonlinear parameters may require manipulation of input.
 
class ComposedModel
 ComposedModel's set_value need to call submodel's set_value.
 

Member Enumeration Documentation

◆ Stage

A model can be treated as an implicit model. An implicit model need to be "solved": the state variables should be iteratively updated until the residual becomes zero. During the SOLVING stage, we only need the derivative of output with respect to the input state. During the UPDATING stage, we only need the derivative of output with respect to the input forces, old forces, and old state. Therefore, the model can/should avoid unnecessary computations by examining the current stage.

Enumerator
SOLVING 
UPDATING 

Constructor & Destructor Documentation

◆ Model()

Model ( const OptionSet & options)

Construct a new Model object.

Parameters
optionsThe options extracted from the input file

Member Function Documentation

◆ allocate_variables() [1/2]

void allocate_variables ( int deriv_order,
bool options_changed )
protectedvirtual

Call VariableStore::allocate_variables recursively on all submodels.

Reimplemented in ComposedModel.

◆ allocate_variables() [2/2]

void allocate_variables ( TorchShapeRef batch_shape,
const torch::TensorOptions & options,
bool in,
bool out,
bool dout_din,
bool d2out_din2 )
protectedvirtual

Allocate variable storages given the batch shape and tensor options.

Parameters
batch_shapeBatch shape of the allocated tensors
optionsTensor options of the allocated tensors
inWhether to allocate tensor storage for input
outWhether to allocate tensor storage for output
dout_dinWhether to allocate tensor storage for the first derivatives
d2out_din2Whether to allocate tensor storage for the second derivatives

Reimplemented from VariableStore.

◆ assemble()

void assemble ( bool residual,
bool Jacobian )
overrideprotectedvirtual

Compute the residual and Jacobian.

Parameters
residualWhether residual is requested
JacobianWhether Jacobian is requested

Implements NonlinearSystem.

◆ batch_dim()

TorchSize batch_dim ( ) const
inline

This model's batch dim.

◆ batch_sizes()

TorchShapeRef batch_sizes ( ) const
inline

This model's batch shape.

◆ cache() [1/3]

void cache ( const torch::TensorOptions & options)
protectedvirtual

Cache tensor options.

◆ cache() [2/3]

void cache ( TorchShapeRef batch_shape)
protectedvirtual

Cache the variable's batch shape.

Reimplemented from VariableStore.

◆ cache() [3/3]

void cache ( TorchShapeRef batch_shape)
overrideprotectedvirtual

Cache the variable's batch shape.

Reimplemented from VariableStore.

◆ check_AD_limitation()

void check_AD_limitation ( ) const
virtual

Validate the currently requested AD settings.

true true okay, just slow
true false error, this is a weird case
false true okay
false false great, everything handcoded
The wrapper (decorator) for cross-referencing unresolved values at parse time.
Definition CrossRef.h:52

Reimplemented in ComposedModel, and ImplicitUpdate.

◆ consumed_items()

const std::set< VariableName > consumed_items ( ) const
overridevirtual

The variables that this model depends on.

Implements DependencyDefinition< VariableName >.

◆ detach_and_zero()

void detach_and_zero ( bool out,
bool dout_din = true,
bool d2out_din2 = true )
overrideprotectedvirtual

Call VariableStore::detach_and_zero recursively on all submodels.

Reimplemented from VariableStore.

◆ expected_options()

OptionSet expected_options ( )
static

◆ get_d2output_dinput2()

LabeledTensor3D get_d2output_dinput2 ( )
virtual
Returns
the second derivative of the output w.r.t. the input of this model

◆ get_doutput_dinput()

LabeledMatrix get_doutput_dinput ( )
virtual
Returns
the derivative of the output w.r.t. the input of this model

◆ get_output()

LabeledVector get_output ( )
virtual
Returns
the output of this model

◆ input_requires_grad_()

void input_requires_grad_ ( bool req = true)

Set requires_grad for the input variables.

◆ is_nonlinear_system()

virtual bool is_nonlinear_system ( ) const
inlinevirtual

Whether this model defines one or more nonlinear equations to be solved.

◆ options()

const torch::TensorOptions & options ( ) const
inline

This model's tensor options.

◆ preflight()

std::vector< Diagnosis > preflight ( ) const
virtual

Check for common problems.

This method serves as the entry point for diagnosing common problems in model setup, composition, etc.

Returns
A vector of exceptions of type Diagnosis for each of the detected problem.

◆ provided_items()

const std::set< VariableName > provided_items ( ) const
overridevirtual

The variables that this model defines as part of its output.

Implements DependencyDefinition< VariableName >.

◆ register_model()

template<typename T , typename = typename std::enable_if_t<std::is_base_of_v<Model, T>>>
T & register_model ( const std::string & name,
int extra_deriv_order = 0,
bool nonlinear = false,
bool merge_input = true )
inlineprotected

Register a model that the current model may use during its evaluation.

If merge_input is set to true, this model will also consume the consumed variables of model, which will affect dependency resolution inside a ComposedModel.

Parameters
nameThe model to register
extra_deriv_orderThe additional derivative order required for the registered-submodel
nonlinearSet to true if the registered model defines a nonlinear system to be solved
merge_inputWhether to merge the input of the registered model into this model's input.

◆ registered_model()

Model * registered_model ( const std::string & name) const

Get a registered model by its name.

◆ registered_models()

const std::vector< Model * > & registered_models ( ) const
inline

The models that may be used during the evaluation of this model.

◆ reinit() [1/2]

void reinit ( const BatchTensor & tensor,
int deriv_order )
virtual

Allocate storage and setup views for all the variables of this model and recursively all of the sub-models. See the other overload for detailed description.

◆ reinit() [2/2]

void reinit ( TorchShapeRef batch_shape,
int deriv_order = 0,
const torch::Device & device = torch::kCPU,
const torch::Dtype & dtype = NEML2_DTYPE )
virtual

Allocate storage and setup views for all the variables of this model and recursively all of the sub-models.

This method must be called before any call to the forward operators, e.g., value, dvalue, value_and_dvalue, etc.

IMPORTANT: If the batch shape of this model changes, this method must be called again to re-allocate the storage and views.

Parameters
batch_shapeBatch shape of the input, output and derivatives
deriv_orderOrder of derivative required for this model
deviceDevice on which the model will be evaluated
dtypeNumber type, e.g., torch::kFloat32, torch::kFloat64, etc

◆ reinit_input_views()

void reinit_input_views ( )
overrideprotectedvirtual

Call VariableStore::reinit_input_views recursively on all submodels.

Reimplemented from VariableStore.

◆ reinit_output_views()

void reinit_output_views ( bool out,
bool dout_din = true,
bool d2out_din2 = true )
overrideprotectedvirtual

Call VariableStore::reinit_output_views recursively on all submodels.

Reimplemented from VariableStore.

◆ requires_2nd_grad()

bool requires_2nd_grad ( ) const
inline

Whether 2nd derivative has been requested for this model.

◆ requires_grad()

bool requires_grad ( ) const
inline

Whether derivative has been requested for this model.

◆ set_input()

void set_input ( const LabeledVector & in)
virtual

Set in to be the input of this model.

◆ set_solution()

void set_solution ( const BatchTensor & x)
overrideprotectedvirtual

Set x as the current solution of the nonlinear system.

Reimplemented from NonlinearSystem.

◆ set_value()

◆ setup()

void setup ( )
overrideprotectedvirtual

Setup this model.

  1. Setup the layout of the input and output axes.
  2. Setup the arguments of each variable.

Reimplemented from NEML2Object.

◆ setup_input_views()

void setup_input_views ( )
overrideprotectedvirtual

Call VariableStore::setup_input_views recursively on all submodels.

Reimplemented from VariableStore.

◆ setup_output_views()

void setup_output_views ( )
overrideprotectedvirtual

Call VariableStore::setup_output_views recursively on all submodels.

Reimplemented from VariableStore.

◆ setup_submodel_input_views()

void setup_submodel_input_views ( )
protectedvirtual

Reimplemented in ComposedModel.

◆ setup_submodel_output_views()

void setup_submodel_output_views ( )
protectedvirtual

◆ use_AD_derivatives()

void use_AD_derivatives ( bool first = true,
bool second = true )

Tell this model to use AD to get derivatives.

◆ using_AD_1st_derivative()

bool using_AD_1st_derivative ( ) const
inline

Whether this model is using AD to get 1st derivatives.

◆ using_AD_2nd_derivative()

bool using_AD_2nd_derivative ( ) const
inline

Whether this model is using AD to get 2nd derivatives.

◆ value() [1/2]

void value ( )
virtual

◆ value() [2/2]

LabeledVector value ( const LabeledVector & in)
virtual

Convenient shortcut to construct and return the model value.

◆ value_and_dvalue() [1/2]

void value_and_dvalue ( )
virtual

◆ value_and_dvalue() [2/2]

std::tuple< LabeledVector, LabeledMatrix > value_and_dvalue ( const LabeledVector & in)
virtual

Convenient shortcut to construct and return the model value and its derivative.

◆ value_and_dvalue_and_d2value() [1/2]

void value_and_dvalue_and_d2value ( )
virtual

◆ value_and_dvalue_and_d2value() [2/2]

std::tuple< LabeledVector, LabeledMatrix, LabeledTensor3D > value_and_dvalue_and_d2value ( const LabeledVector & in)
virtual

Convenient shortcut to construct and return the model's value, first and second derivative.

Friends And Related Symbol Documentation

◆ ComposedModel

ComposedModel's set_value need to call submodel's set_value.

◆ ParameterStore

Declaration of nonlinear parameters may require manipulation of input.

Member Data Documentation

◆ _AD_1st_deriv

bool _AD_1st_deriv
protected

Whether to use AD to compute 1st derivatives.

◆ _AD_2nd_deriv

bool _AD_2nd_deriv
protected

Whether to use AD to compute 2nd derivatives.

◆ _registered_models

std::vector<Model *> _registered_models
protected

Models this model may use during its evaluation.

◆ stage

Model::Stage stage = UPDATING
static