NEML2 1.4.0
Loading...
Searching...
No Matches
R5 Class Reference

Public Member Functions

R5 __add__ (self, float arg0)
 
R5 __add__ (self, Scalar arg0)
 
R5 __add__ (self, R5 arg0)
 
None __init__ (self)
 
None __init__ (self, torch.Tensor arg0, int arg1)
 
None __init__ (self, R5 arg0)
 
None __init__ (self, torch.Tensor arg0)
 
R5 __mul__ (self, float arg0)
 
R5 __mul__ (self, Scalar arg0)
 
R5 __neg__ (self)
 
R5 __pow__ (self, float arg0)
 
R5 __pow__ (self, Scalar arg0)
 
R5 __radd__ (self, float arg0)
 
str __repr__ (self)
 
R5 __rmul__ (self, float arg0)
 
Tensor __rpow__ (self, float arg0)
 
R5 __rsub__ (self, float arg0)
 
R5 __rtruediv__ (self, float arg0)
 
str __str__ (self)
 
R5 __sub__ (self, float arg0)
 
R5 __sub__ (self, Scalar arg0)
 
R5 __sub__ (self, R5 arg0)
 
R5 __truediv__ (self, float arg0)
 
R5 __truediv__ (self, Scalar arg0)
 
R5 __truediv__ (self, R5 arg0)
 
bool batched (self)
 
R5 clone (self)
 
torch.Tensor copy_ (self, torch.Tensor arg0, bool arg1)
 
bool defined (self)
 
R5 detach (self)
 
torch.Tensor detach_ (self)
 
int dim (self)
 
torch.Tensor requires_grad_ (self, bool arg0)
 
Tensor tensor (self)
 
R5 to (self, *torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)
 
torch.Tensor torch (self)
 
torch.Tensor torch (self)
 
torch.Tensor zero_ (self)
 
R5BaseView base (self)
 
R5BatchView batch (self)
 
torch.device device (self)
 
torch.dtype dtype (self)
 
torch.Tensor grad (self)
 
bool requires_grad (self)
 
tuple[int,...] shape (self)
 

Static Public Member Functions

R5 empty (*torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)
 
R5 empty (tuple[int,...] batch_shape, *torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)
 
R5 empty_like (R5 arg0)
 
R5 full (float fill_value, *torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)
 
R5 full (tuple[int,...] batch_shape, float fill_value, *torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)
 
R5 full_like (R5 arg0, float arg1)
 
R5 linspace (R5 start, R5 end, int nstep, int dim=0, int batch_dim=-1)
 
R5 logspace (R5 start, R5 end, int nstep, int dim=0, int batch_dim=-1, float base=10.0)
 
R5 ones (*torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)
 
R5 ones (tuple[int,...] batch_shape, *torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)
 
R5 ones_like (R5 arg0)
 
R5 zeros (*torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)
 
R5 zeros (tuple[int,...] batch_shape, *torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)
 
R5 zeros_like (R5 arg0)
 

Constructor & Destructor Documentation

◆ __init__() [1/4]

None __init__ ( self)

◆ __init__() [2/4]

None __init__ ( self,
torch.Tensor arg0,
int arg1 )

◆ __init__() [3/4]

None __init__ ( self,
R5 arg0 )

◆ __init__() [4/4]

None __init__ ( self,
torch.Tensor arg0 )

Member Function Documentation

◆ __add__() [1/3]

R5 __add__ ( self,
float arg0 )

◆ __add__() [2/3]

R5 __add__ ( self,
R5 arg0 )

◆ __add__() [3/3]

R5 __add__ ( self,
Scalar arg0 )

◆ __mul__() [1/2]

R5 __mul__ ( self,
float arg0 )

◆ __mul__() [2/2]

R5 __mul__ ( self,
Scalar arg0 )

◆ __neg__()

R5 __neg__ ( self)

◆ __pow__() [1/2]

R5 __pow__ ( self,
float arg0 )

◆ __pow__() [2/2]

R5 __pow__ ( self,
Scalar arg0 )

◆ __radd__()

R5 __radd__ ( self,
float arg0 )

◆ __repr__()

str __repr__ ( self)

◆ __rmul__()

R5 __rmul__ ( self,
float arg0 )

◆ __rpow__()

Tensor __rpow__ ( self,
float arg0 )

◆ __rsub__()

R5 __rsub__ ( self,
float arg0 )

◆ __rtruediv__()

R5 __rtruediv__ ( self,
float arg0 )

◆ __str__()

str __str__ ( self)

◆ __sub__() [1/3]

R5 __sub__ ( self,
float arg0 )

◆ __sub__() [2/3]

R5 __sub__ ( self,
R5 arg0 )

◆ __sub__() [3/3]

R5 __sub__ ( self,
Scalar arg0 )

◆ __truediv__() [1/3]

R5 __truediv__ ( self,
float arg0 )

◆ __truediv__() [2/3]

R5 __truediv__ ( self,
R5 arg0 )

◆ __truediv__() [3/3]

R5 __truediv__ ( self,
Scalar arg0 )

◆ base()

R5BaseView base ( self)

◆ batch()

R5BatchView batch ( self)

◆ batched()

bool batched ( self)

◆ clone()

R5 clone ( self)

◆ copy_()

torch.Tensor copy_ ( self,
torch.Tensor arg0,
bool arg1 )

◆ defined()

bool defined ( self)

◆ detach()

R5 detach ( self)

◆ detach_()

torch.Tensor detach_ ( self)

◆ device()

torch.device device ( self)

◆ dim()

int dim ( self)

◆ dtype()

torch.dtype dtype ( self)

◆ empty() [1/2]

R5 empty ( *torch.dtype dtype = ...,
torch.device device = ...,
bool requires_grad = False )
static

◆ empty() [2/2]

R5 empty ( tuple[int, ...] batch_shape,
*torch.dtype dtype = ...,
torch.device device = ...,
bool requires_grad = False )
static

◆ empty_like()

R5 empty_like ( R5 arg0)
static

◆ full() [1/2]

R5 full ( float fill_value,
*torch.dtype dtype = ...,
torch.device device = ...,
bool requires_grad = False )
static

◆ full() [2/2]

R5 full ( tuple[int, ...] batch_shape,
float fill_value,
*torch.dtype dtype = ...,
torch.device device = ...,
bool requires_grad = False )
static

◆ full_like()

R5 full_like ( R5 arg0,
float arg1 )
static

◆ grad()

torch.Tensor grad ( self)

◆ linspace()

R5 linspace ( R5 start,
R5 end,
int nstep,
int dim = 0,
int batch_dim = -1 )
static

◆ logspace()

R5 logspace ( R5 start,
R5 end,
int nstep,
int dim = 0,
int batch_dim = -1,
float base = 10.0 )
static

◆ ones() [1/2]

R5 ones ( *torch.dtype dtype = ...,
torch.device device = ...,
bool requires_grad = False )
static

◆ ones() [2/2]

R5 ones ( tuple[int, ...] batch_shape,
*torch.dtype dtype = ...,
torch.device device = ...,
bool requires_grad = False )
static

◆ ones_like()

R5 ones_like ( R5 arg0)
static

◆ requires_grad()

bool requires_grad ( self)

◆ requires_grad_()

torch.Tensor requires_grad_ ( self,
bool arg0 )

◆ shape()

tuple[int, ...] shape ( self)

◆ tensor()

Tensor tensor ( self)

◆ to()

R5 to ( self,
*torch.dtype dtype = ...,
torch.device device = ...,
bool requires_grad = False )

◆ torch() [1/2]

torch.Tensor torch ( self)

◆ torch() [2/2]

torch.Tensor torch ( self)

◆ zero_()

torch.Tensor zero_ ( self)

◆ zeros() [1/2]

R5 zeros ( *torch.dtype dtype = ...,
torch.device device = ...,
bool requires_grad = False )
static

◆ zeros() [2/2]

R5 zeros ( tuple[int, ...] batch_shape,
*torch.dtype dtype = ...,
torch.device device = ...,
bool requires_grad = False )
static

◆ zeros_like()

R5 zeros_like ( R5 arg0)
static